Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 14(19): 9000-9017, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37740322

RESUMO

Colorectal cancer (CRC) is one of the most common cancers with high morbidity and mortality. The modulation of intestinal health through the administration of pro- and prebiotics may be a viable alternative to reduce the risk of CRC. This study aimed to evaluate the functional effects of yacon and kefir, isolated or associated, in rats with colorectal cancer. Adult Wistar rats were divided into five groups (n = 8): HC (healthy control AIN-93M diet), CC (CCR + AIN-93M diet), Y (CCR + AIN-93 M + yacon diet), K (CCR + AIN-93-M + kefir diet) and YK (CCR + AIN-93 M + yacon + kefir diet). Colorectal carcinogenesis was induced in groups CC, Y, K, and YK with 1,2-dimethylhydrazine (55 mg kg-1, subcutaneously) for 5 weeks. From the 6th week onwards, the experimental groups were fed the respective diets. In the 15th week, urine was collected for analysis of intestinal permeability and then the animals were euthanized. Yacon increased acetate levels, reduced pH and carcinogenic neoplastic lesions, and increased the abundance of bacteria related to the fermentation of non-digestible carbohydrates, such as the genera Dorea, Collinsela, and Bifidobacteria. On the other hand, kefir increased macroscopic neoplastic lesions and increased the abundance of Firmicutes and Clostridium. The association of yacon + kefir increased the number of carcinogenic lesions, despite a reduction in pH and beneficial bacteria prevalence. Thus, it is concluded that yacon, unlikely kefir, is a promising alternative to mitigate the manifestations of induced carcinogenesis in rats.


Assuntos
Antioxidantes , Carcinogênese , Neoplasias Colorretais , Microbioma Gastrointestinal , Kefir , Extratos Vegetais , Animais , Ratos , Asteraceae , Carcinogênese/efeitos dos fármacos , Carcinógenos , Neoplasias Colorretais/prevenção & controle , Inflamação , Ratos Wistar , Extratos Vegetais/farmacologia
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(10): 1452-1461, 2022 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-36329578

RESUMO

OBJECTIVE: To observe the inhibitory effect of Shenbai Jiedu Fang (SBJDF, a compound recipe of traditional Chinese herbal drugs) on chemically induced carcinogenesis of colorectal adenoma in mice and explore the role of PTEN/PI3K/AKT signaling pathway in mediating this effect. METHODS: Four-week-old male C57BL/6 mice were randomly divided into control group (n=10), AOM/DSS model group (n=20), low-dose (14 g/kg) SBJDF group (n=10) and high-dose (42 g/kg) SBJDF group (n= 10). In the latter 3 groups, the mice were treated with azoxymethane (AOM) and dextran sodium sulphate (DSS) to induce carcinogenesis of colorectal adenoma. In the two SBJDF treatment groups, SBJDF was administered daily by gavage during the modeling. The survival rate, body weight, general condition of the mice, and intestinal adenoma formation and carcinogenesis were observed. The expressions of proteins associated with the PTEN/PI3K/AKT signaling pathway in the intestinal tissue were detected using immunohistochemistry. RESULTS: Compared with those in the model group, the mice treated with SBJDF, especially at the high dose, showed a significantly lower incidence of intestinal carcinogenesis and had fewer intestinal tumors with smaller tumor volume. Pathological examination showed the occurrence of adenocarcinoma in the model group, while only low-grade and high-grade neoplasia were found in low-dose SBJDF group; the mice treated with high-dose SBJDF showed mainly normal mucosal tissues in the intestines with only a few lesions of low-grade neoplasia of adenoma. Compared with those in the control group, the mice in the model group had significantly elevated plasma miRNA-222 level (P < 0.05), which was obviously lowered in the two SBJDF groups (P < 0.01). The results of immunohistochemistry revealed that compared with the model group, the two SBJDF groups, especially the high-dose group, had significantly up-regulated expressions of PTEN, P-PTEN and GSK-3ß and down-regulated expressions of p-GSK-3 ß, PI3K, AKT, P-AKT, ß-catenin, c-myc, cyclinD1 and survivin in the intestinal tissues. CONCLUSION: SBJDF can significantly inhibit colorectal adenoma formation and carcino-genesis in mice possibly through regulating miRNA-222 and affecting PTEN/PI3K/AKT signaling pathway.


Assuntos
Adenoma , Carcinogênese , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Animais , Masculino , Camundongos , Adenoma/induzido quimicamente , Adenoma/patologia , Adenoma/prevenção & controle , Azoximetano/efeitos adversos , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 66-80, ene. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1372378

RESUMO

Melastoma malabathricum (M. malabathricum) extracts have been reported to exert various pharmacological activities including antioxidants, anti-inflammatory and antiproliferative activities. The objective of the present study was to determine the anticarcinogenic activity of its methanol extract (MEMM) against the azoxymethane (AOM)-induced early colon carcinogenesis in rats. Rats were randomly assigned to five groups (n=6) namely normal control, negative control, and treatment (50, 250 or 500 mg/kg of MEMM) groups. Colon tissues were harvested for histopathological analysis and endogenous antioxidant system determination. MEMM was also subjected to HPLC analysis. Findings showed that MEMM significantly (p<0.05) reversed the AOM-induced carcinogenicity by: i) reducing the formation of aberrant crypt foci (ACF) in colon tissues, and; ii) enhancing the endogenous antioxidant activity (catalase, superoxide dismutase and glutathione peroxidase). Moreover, various phenolics has been identified in MEMM. In conclusion, MEMM exerts the in vivo anticarcinogenic activity via the activation of endogenous antioxidant system and synergistic action of phenolics.


Se ha informado que los extractos de Melastoma malabathricum (M. malabathricum) ejercen diversas actividades farmacológicas, incluidas actividades antioxidantes, antiinflamatorias y antiproliferativas. El objetivo del presente estudio fue determinar la actividad anticancerígena de su extracto de metanol (MEMM) contra la carcinogénesis de colon temprana inducida por azoximetano (AOM) en ratas. Las ratas se asignaron al azar a cinco grupos (n=6), a saber, los grupos de control normal, control negativo y tratamiento (50, 250 o 500 mg/kg de MEMM). Tejidos de colon fueron recolectados para análisis histopatológico y determinación del sistema antioxidante endógeno. MEMM también se sometió a análisis de HPLC. Los hallazgos mostraron que MEMM invirtió significativamente (p<0.05) la carcinogenicidad inducida por AOM al: i) reducir la formación de focos de criptas aberrantes (ACF) en los tejidos del colon, y; ii) potenciar la actividad antioxidante endógena (catalasa, superóxido dismutasa y glutatión peroxidasa). Además, se han identificado varios fenólicos en MEMM. En conclusión, MEMM ejerce la actividad anticancerígena in vivo mediante la activación del sistema antioxidante endógeno y la acción sinérgica de los fenólicos.


Assuntos
Animais , Ratos , Extratos Vegetais/administração & dosagem , Anticarcinógenos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Melastomataceae/química , Tamanho do Órgão/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Colo/patologia , Folhas de Planta , Metanol , Compostos Fenólicos , Focos de Criptas Aberrantes , Carcinogênese/efeitos dos fármacos , Antioxidantes
4.
FASEB J ; 36(1): e22082, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918389

RESUMO

Vitamin D deficiency is associated with risk of several common cancers, including colorectal cancer (CRC). Here we have utilized patient derived epithelial organoids (ex vivo) and CRC cell lines (in vitro) to show that calcitriol (1,25OHD) increased the expression of the CRC tumor suppressor gene, CDH1, at both the transcript and protein level. Whole genome expression analysis demonstrated significant differential expression of a further six genes after 1,25OHD treatment, including genes with established links to carcinogenesis GADD45, EFTUD1 and KIAA1199. Furthermore, gene ontologies relevant to carcinogenesis were enriched by 1,25OHD treatment (e.g., 'regulation of Wnt signaling pathway', 'regulation of cell death'), with common enriched processes across in vitro and ex vivo cultures including 'negative regulation of cell proliferation', 'regulation of cell migration' and 'regulation of cell differentiation'. Our results identify genes and pathways that are modifiable by calcitriol that have links to CRC tumorigenesis. Hence the findings provide potential mechanism to the epidemiological and clinical trial data indicating a causal association between vitamin D and CRC. We suggest there is strong rationale for further well-designed trials of vitamin D supplementation as a novel CRC chemopreventive and chemotherapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Transcriptoma/efeitos dos fármacos , Vitamina D/análogos & derivados , Células CACO-2 , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Vitamina D/farmacologia
5.
J Nutr Biochem ; 100: 108899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748924

RESUMO

A. membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.


Assuntos
Antígeno B7-H1/metabolismo , Carcinogênese/efeitos dos fármacos , Isoflavonas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Regulação para Baixo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Lisossomos/metabolismo , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/imunologia , Neoplasias do Colo do Útero/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Regul Toxicol Pharmacol ; 128: 105072, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34742869

RESUMO

Iron oxide nanoparticles (magnetite) have been widely used in industry and medicine. However, the safety assessment of magnetite has not been fully completed. The present study was conducted to assess effects of magnetite on carcinogenic activity, using a medium-term bioassay protocol. A total of 100 male Fischer 344 rats, 6 weeks old, were randomly divided into 5 groups of 20 animals each, and given a basal diet and drinking water containing 0 or 0.1% of N-bis(2-hydroxypropyl)nitrosamine (DHPN) for 2 weeks. Two weeks later, the rats were intratracheally instilled magnetite 7 times at an interval of 4 weeks, at the doses of 0, 1.0 or 5.0 mg/kg body weight, and sacrificed at the end of the experimental period of 30 weeks. The multiplicities of macroscopic lung nodules and histopathologically diagnosed bronchiolo-alveolar hyperplasia, induced by DHPN, were both significantly decreased by the high dose of magnetite. The expression of minichromosome maintenance (MCM) protein 7 in non-tumoral alveolar epithelial cells, and the number of CD163-positive macrophages in tumor nodules were both significantly reduced by magnetite. It is suggested that magnetite exerts inhibitory effects against DHPN-induced lung tumorigenesis, by the reduction of alveolar epithelial proliferation and the M2 polarization of tumor-associated macrophages.


Assuntos
Carcinogênese/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nitrosaminas/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
7.
J Cancer Res Ther ; 17(6): 1445-1453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916376

RESUMO

BACKGROUND: Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats and mice, with the cytotoxicity of AOM mediated by oxidative stress. AIM OF STUDY: This study investigated the protective effect of a natural antioxidant (GliSODin) against AOM-induced oxidative stress and carcinogenesis in rat colon. METHODS: Twenty male Wistar rats were randomly divided into four groups (five rats/group). The control group was fed a basal diet. AOM-treated group (AOM) was fed a basal diet and received intraperitoneal injections of AOM for 2 weeks at a dose of 15 mg/kg. The GliSODin treatment group (superoxide dismutase [SOD]) received oral supplementation of GliSODin (300 mg/kg) for 3 months, and the fourth combined group received AOM and GliSODin (AOM + SOD). All animals were continuously fed ad libitum until the age of 16 weeks when all rats were sacrificed. The colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, oxidant status (lipid peroxidation-LPO), and enzyme antioxidant system (glutathione [GSH], GSH-S-transferase, catalase, and SOD). RESULTS: Our results showed that AOM induced ACF development and oxidative stress (GSH depletion and lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with GliSODin significantly ameliorated the cytotoxic effects of AOM. CONCLUSION: The results of this study provide in vivo evidence that GliSODin reduced the AOM-induced colon cancer in rats, through their potent antioxidant activities.


Assuntos
Antioxidantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Gliadina/farmacologia , Proteínas de Plantas/farmacologia , Superóxido Dismutase/farmacologia , Animais , Antioxidantes/uso terapêutico , Azoximetano/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Cucurbitaceae/enzimologia , Ensaios de Seleção de Medicamentos Antitumorais , Gliadina/uso terapêutico , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/uso terapêutico , Ratos , Superóxido Dismutase/uso terapêutico , Triticum/química
8.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 178-186, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817319

RESUMO

The growing complexity of metastasis has sparked tremendous interest in unraveling of the underlying mechanisms which play fundamental role in cancer progression and metastasis. Ground-breaking discoveries in metastasis research have greatly enhanced our understanding about intricate nature of metastasis. Bioactive chemicals obtained from citrus fruits have gained noteworthy appreciation because of significant cancer chemopreventive roles. Deregulated oncogenic signaling cascades play central role in metastasis. Emerging evidence has started to shed light on the metastasis inhibitory properties of naringin, naringenin, tangeretin, nobiletin, hesperidin and hesperetin in different cancer cell lines and xenografted mice. Wnt/?-catenin, TGF/SMAD and NOTCH signaling cascades have been shown to play linchpin role in carcinogenesis and metastasis. There is emerging evidence related to pharmacological targeting of Wnt/?-catenin, TGF/SMAD and NOTCH by citrus-derived bioactive components. These findings are indeed encouraging and will enable researchers to gain further insights into pharmacological targeting of oncogenic pathways to inhibit and prevent metastasis.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Citrus/química , Neoplasias/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinogênese/metabolismo , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Fitoquímicos/química
9.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 25-32, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34817341

RESUMO

There has been an exponential growth in the field of molecular oncology and cutting-edge research has enabled us to develop a better understanding of therapeutically challenging nature of cancer. Based on the mechanistic insights garnered from decades of research, puzzling mysteries of multifaceted nature of cancer have been solved to a greater extent. Our rapidly evolving knowledge about deregulated oncogenic cell signaling pathways has allowed us to dissect different oncogenic transduction cascades which play critical role in cancer onset, progression and metastasis. Pharmacological targeting of deregulated pathways has attracted greater than ever attention in the recent years. Henceforth, discovery and identification of high-quality biologically active chemicals and products is gaining considerable momentum. There has been an explosion in the dimension of natural product research because of tremendous potential of chemopreventive and pharmaceutical significance of natural products. Schisandrin is mainly obtained from Schisandra chinensis. Schisandrin has been shown to be effective against different cancers because of its ability to inhibit/prevent cancer via modulation of different cell signaling pathways. Importantly, regulation of non-coding RNAs by schisandrin is an exciting area of research that still needs detailed and comprehensive research.   However, we still have unresolved questions about pharmacological properties of schisandrin mainly in context of its regulatory role in TGF/SMAD, SHH/GLI, NOTCH and Hippo pathways.


Assuntos
Ciclo-Octanos/uso terapêutico , Lignanas/uso terapêutico , Neoplasias/prevenção & controle , Compostos Policíclicos/uso terapêutico , Schisandra/química , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Ensaios Clínicos como Assunto , Ciclo-Octanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Policíclicos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Resultado do Tratamento
10.
Curr Drug Metab ; 22(13): 998-1008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34802402

RESUMO

BACKGROUND: Intrinsic rhythms in host and cancer cells play an imperative role in tumorigenesis and anticancer therapy. Circadian medicine in cancer is principally reliant on the control of growth and development of cancer cells or tissues by targeting the molecular clock and implementing time-of-day-based anticancer treatments for therapeutic improvements. In recent years, based on extensive high-throughput studies, we witnessed the arrival of several drugs and drug-like compounds that can modulate circadian timekeeping for therapeutic gain in cancer management. OBJECTIVE: This perspective article intends to illustrate the current trends in circadian medicine in cancer, focusing on clock-modulating pharmacological compounds and circadian regulation of anticancer drug metabolism and efficacy. Scope and Approach: Considering the critical roles of the circadian clock in metabolism, cell signaling, and apoptosis, chronopharmacology research is exceedingly enlightening for understanding cancer biology and improving anticancer therapeutics. In addition to reviewing the relevant literature, we investigated the rhythmic expression of molecular targets for many anticancer drugs frequently used to treat different cancer types. Key Findings and Conclusion: There are adequate empirical pieces of evidence supporting circadian regulation of drug metabolism, transport, and detoxification. Administration of anticancer drugs at specific dosing times can improve their effectiveness and reduce the toxic effects. Moreover, pharmacological modulators of the circadian clock could be used for targeted anticancer therapeutics such as boosting circadian rhythms in the host can markedly reduce the growth and viability of tumors. All in all, precision chronomedicine can offer multiple advantages over conventional anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese , Relógios Circadianos , Cronoterapia Farmacológica , Neoplasias , Administração Metronômica , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Cronofarmacocinética , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Humanos , Quimioterapia de Manutenção/métodos , Quimioterapia de Manutenção/tendências , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768930

RESUMO

Until now, several studies have looked at the issue of anthocyanin and cancer, namely the preventive and inhibitory effects of anthocyanins, as well as the underlying molecular processes. However, no targeted review is available regarding the anticarcinogenic effects of delphinidin and its glycosides on various cancers and their plausible molecular mechanisms. Considerable evidence shows significant anticancer properties of delphinidin-rich preparations and delphinidin alone both in vitro and in vivo. This review covers the in vitro and preclinical implications of delphinidin-mediated cell protection and cancer prevention; thus, we strongly recommend that delphinidin-rich preparations be further investigated as potential functional food, dietary antioxidant supplements, and natural health products targeting specific chronic diseases, including cancer. In addition to in vitro investigations, future research should focus on more animal and human studies to determine the true potential of delphinidin.


Assuntos
Antocianinas/farmacologia , Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Neoplasias/prevenção & controle , Animais , Antocianinas/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Glicosídeos/química , Glicosídeos/farmacologia , Glicosilação , Humanos , Camundongos , Neoplasias/tratamento farmacológico
12.
Oxid Med Cell Longev ; 2021: 7665169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630852

RESUMO

The present work was designed to assess the efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally induced renal carcinogenesis in male Wistar rats and their roles in regulating oxidative stress, inflammation, apoptosis, and carcinogenesis. The diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4)-administered rats were orally treated with STE (200 mg/kg b.w.), Sm (150 mg/kg b.w.), and Sb (5 mg/kg b.w.) every other day either from the 1st week or from the 16th week of carcinogen administration to the end of 25th week. The treatments with STE, Sm, and Sb attenuated markers of toxicity in serum, decreased kidney lipid peroxidation (LPO), and significantly reinforced the renal antioxidant armory. The biochemical results were further confirmed by the histopathological alterations. The treatments also led to suppression of proinflammatory mediators such as NF-κß, p65, Iκßα, and IL-6 in association with inhibition of the PI3K/Akt pathway. Furthermore, they activated the expressions of PPARs, Nrf2, and IL-4 in addition to downregulation of apoptotic proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2. The obtained data supply potent proof for the efficacy of STE, Sm, and Sb to counteract renal carcinogenesis via alteration of varied molecular pathways.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina/administração & dosagem , Silimarina/administração & dosagem , Animais , Carcinogênese/induzido quimicamente , Modelos Animais de Doenças , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/prevenção & controle , Masculino , Ratos , Ratos Wistar
13.
Food Chem Toxicol ; 157: 112581, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562529

RESUMO

Lung cancer caused one-quarter of all cancer deaths that was more than other cancers. Chemoprevention is a potential strategy to reducing lung cancer incidence and death, and the effective chemopreventive agents are needed. We investigated the efficacy and mechanism of garlic oil (GO), the garlic product, in the chemoprevention of tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer in A/J mice and MRC-5 cell models in the present study. As a result, it was demonstrated that GO significantly inhibited the NNK-induced lung cancer in vivo and protected MRC-5 cells from NNK-induced cell damage. GO could induce the expressions of the phase II drug-metabolizing enzymes, including NAD(P)H: quinone oxidoreductase 1 (NQO-1), glutathione S-transferase alpha 1 (GSTA1), and antioxidative enzymes heme oxygenase-1 (HO-1). These results supported the potential of GO as a novel candidate agent for the chemoprevention of tobacco carcinogens induced lung cancer.


Assuntos
Compostos Alílicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Nitrosaminas/toxicidade , Sulfetos/uso terapêutico , Compostos Alílicos/farmacologia , Animais , Benzotiazóis/metabolismo , Western Blotting , Ensaio Cometa , Feminino , Citometria de Fluxo , Neoplasias Pulmonares/induzido quimicamente , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Nitrosaminas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sulfetos/farmacologia
14.
J Pharm Pharmacol ; 73(12): 1630-1642, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559878

RESUMO

OBJECTIVES: Ginkgolide C (GGC) isolated from Ginkgo biloba (Ginkgoaceae) leaf can demonstrate pleiotropic pharmacological actions. However, its anti-oncogenic impact in non-small cell lung cancer (NSCLC) model has not been reconnoitered. As signal transducer and activator of transcription 3 (STAT3) cascade can promote tumour growth and survival, we contemplated that GGC may interrupt this signalling cascade to expend its anti-cancer actions in NSCLC. METHODS: The effect of GGC on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation and apoptosis was examined. The in-vivo effect of GGC on the growth of human NSCLC xenograft tumours in athymic nu/nu female mice was also investigated. KEY FINDINGS: GGC attenuated the phosphorylation of STAT3 and STAT3 upstream kinases effectively. Exposure to pervanadate modulated GGC-induced down-regulation of STAT3 activation and promoted an elevation in the level of PTPε protein. Indeed, silencing of the PTPε gene reversed the GGC-promoted abrogation of STAT3 activation and apoptosis. Moreover, GGC exposure significantly reduced NSCLC tumour growth without demonstrating significant adverse effects via decreasing levels of p-STAT3 in mice tissues. CONCLUSIONS: Overall, the findings support that GGC may exhibit anti-neoplastic actions by mitigation of STAT3 signalling cascade in NSCLC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ginkgo biloba/química , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Ginkgolídeos/uso terapêutico , Humanos , Lactonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Fosforilação , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Am Chem Soc ; 143(35): 14115-14124, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34374290

RESUMO

Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Acetazolamida/análogos & derivados , Acetazolamida/uso terapêutico , Animais , Antineoplásicos/síntese química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/uso terapêutico , Diarileptanoides/síntese química , Diarileptanoides/uso terapêutico , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/uso terapêutico , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/diagnóstico por imagem , Esferoides Celulares/efeitos dos fármacos , Tiofenos/síntese química , Tiofenos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Pharmacother ; 142: 112043, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411919

RESUMO

Despite its adverse effects, chemotherapy is generally used for the treatment of colorectal cancer (CRC). Development of supplement preparations targeting cancer stem cells (CSCs) that cause distant metastasis and drug resistance is required. Although curcumin is known to have anti-tumor, hepatoprotective, and hypoglycemic-like actions, its low water solubility, oral absorption, and bioavailability impede its therapeutic uses. Patient-derived organoid cultures can recapitulate heterogeneity, epithelial structures, and molecular imprints of their parental tissues. In the present study, anti-carcinogenic properties of amorphous curcumin (AC), a compound with improved solubility and bioavailability, were evaluated against human CRC organoids. Treatment with AC inhibited the cell viability of CRC organoids in a concentration-dependent manner. AC arrested the cell cycle of CRC organoids and induced apoptosis. AC inhibited phosphorylation of ERK. Expression of downstream signals of ERK, namely c-MYC and cyclin-D1, were inhibited. Expressions of CSC markers, CD44, LGR5, and CD133, were declined in the AC-treated CRC organoids. The combinational treatment of CRC organoids with AC and anti-cancer drugs, oxaliplatin, 5-FU, or irinotecan showed a synergistic activity. In vivo, AC decreased the tumor growth of CRC organoids in mice with the induction of necrotic lesions. In conclusion, AC diminished the cell viability of CRC organoids through the inhibition of proliferation-related signals and CSC marker expression in addition to arresting the cell cycle. Collectively, these data suggest the value of AC as a promising supplement that could be used in combination with anti-cancer drugs to prevent the recurrence and metastasis of CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Organoides/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Curcumina/uso terapêutico , Sinergismo Farmacológico , Fluoruracila/farmacologia , Humanos , Irinotecano/farmacologia , Masculino , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Organoides/patologia , Oxaliplatina/farmacologia
17.
Biomed Pharmacother ; 141: 111849, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34214729

RESUMO

Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Curcumina/farmacologia , Epigênese Genética/efeitos dos fármacos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/biossíntese , MicroRNAs/genética , Animais , Curcuma/química , Humanos , Extratos Vegetais
18.
Cells ; 10(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206989

RESUMO

Honokiol (HNK) is a biphenolic compound that has been used in traditional medicine for treating various ailments, including cancers. In this study, we determined the effect of HNK on colon cancer cells in culture and in a colitis-associated cancer model. HNK treatment inhibited proliferation and colony formation while inducing apoptosis. In addition, HNK suppressed colonosphere formation. Molecular docking suggests that HNK interacts with reserve stem cell marker protein DCLK1, with a binding energy of -7.0 Kcal/mol. In vitro kinase assays demonstrated that HNK suppressed the DCLK1 kinase activity. HNK also suppressed the expression of additional cancer stem cell marker proteins LGR5 and CD44. The Hippo signaling pathway is active in intestinal stem cells. In the canonical pathway, YAP1 is phosphorylated at Ser127 by upstream Mst1/2 and Lats1/2. This results in the sequestration of YAP1 in the cytoplasm, thereby not allowing YAP1 to translocate to the nucleus and interact with TEAD1-4 transcription factors to induce gene expression. However, HNK suppressed Ser127 phosphorylation in YAP1, but the protein remains sequestered in the cytoplasm. We further determined that this occurs by YAP1 interacting with PUMA. To determine if this also occurs in vivo, we performed studies in an AOM/DSS induced colitis-associated cancer model. HNK administered by oral gavage at a dose of 5mg/kg bw for 24 weeks demonstrated a significant reduction in the expression of YAP1 and TEAD1 and in the stem marker proteins. Together, these data suggest that HNK prevents colon tumorigenesis in part by inducing PUMA-YAP1 interaction and cytoplasmic sequestration, thereby suppressing the oncogenic YAP1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos de Bifenilo/farmacologia , Carcinogênese/patologia , Neoplasias do Colo/patologia , Lignanas/farmacologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/complicações , Quinases Semelhantes a Duplacortina , Regulação para Baixo/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos ICR , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Proteínas de Sinalização YAP
19.
J Nutr Biochem ; 96: 108806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147603

RESUMO

Many cancer patients receive their classical therapies together with vitamin supplements. However, the effectiveness of these strategies is on debate. Here we aimed to evaluate how vitamin E supplementation affects the anticancer effects of interferon (IFN-α) using an early-model of liver cancer development (initiation-promotion, IP). Male Wistar rats subjected to this model were divided as follows: untreated (IP), IP treated with recombinant IFN-α-2b (6.5  ×  105 U/kg), IP treated with vitamin E (50 mg/kg), and IP treated with combination of vitamin E and IFN-α-2b. After treatments rats were fasted and euthanized and plasma and livers were collected. Combined administration of vitamin E and IFN-α-2b induced body weight drop, increased liver apoptosis, and low levels of hepatic lipids. Interestingly, vitamin E and IFN-α-2b combination also induced an increase in altered hepatic foci number, but not in size. It seems that vitamin E acts on its antioxidant capability in order to block the oxidative stress induced by IFN-α-2b, blocking in turn its beneficial effects on preneoplastic livers, leading to harmful final effects. In conclusion, this study shows that vitamin E supplementation in IFN-α-2b-treated rats exerts unwanted effects; and highlights that in spite of being natural, nutritional supplements may not always exert beneficial outcomes when used as complementary therapy for the treatment of cancer.


Assuntos
Anticarcinógenos/farmacologia , Interferon alfa-2/farmacologia , Neoplasias Hepáticas/prevenção & controle , Vitamina E/farmacologia , Vitaminas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Interações Medicamentosas , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Ratos Wistar
20.
Biochem Biophys Res Commun ; 562: 119-126, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34051575

RESUMO

BACKGROUND: Prostate cancer (PCa) refers to malignant tumors derived from prostate epithelial cells, whose morbidity and mortality rates have been increasing every year. Although new drugs for treating prostate cancer continue to emerge, the unclear mechanism underlying drug targets limits this therapy, thereby constraining identification of effective therapeutic targets. Although GDP dissociation inhibitor 2(GDI2) is highly expressed and closely associated with occurrence and development of many tumors, its role in prostate cancer remains unclear. In this study, we investigated the role of GDI2 and elucidated its underlying mechanism of action in prostate cancer. Moreover, we screened chemotherapeutic drugs that affect GDI2 expression with a view of identifying novel targets for diagnosis and treatment of prostate cancer. METHODS: We performed sequence analyses and functional assays to precisely elucidate the GDI2 role in prostate cancer. Moreover, we induced tumorigenesis in nude mice to verify the role of GDI2 in vivo. Finally, we used the CCK8 assay to ascertain the most suitable IC50 across the three drugs and performed quantitative real time polymerase chain reaction (qRT-PCR) and Western Blot to analyze the effects of drugs on expression of GDI2, p75NTR, and p-NFκB. RESULTS: GDI2 was up-regulated in prostate cancer cells and tissues. Knocking down GDI2 suppressed cell proliferation but promoted cell apoptosis. Interestingly, knocking down GDI2 activated the p75NTR signaling pathway, indicating, for the first time, that p75NTR is negatively correlated with GDI2 expression. CONCLUSION: Taken together, these results indicate that GDI2 is a therapeutic target of paclitaxel. Knocking down of GDI2 inhibits cell proliferation and promotes cell apoptosis via the p75NTR signaling pathway in prostate cancer. Notably, paclitaxel inhibits GDI2 expression, implying that GDI2 may be a promising therapeutic target in prostate cancer.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Paclitaxel/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinogênese/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA